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Abstract

Background

Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are
unusual since they have evolved gonochorism. In schistosomes, sex is determined by a
female heterogametic system, but phenotypic sexual dimorphism appears only after infec-
tion of the vertebrate definitive host. The completion of gonad maturation occurs even later,
after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in
these species remain unknown, and in vivo studies on the developing schistosomulum
stages are lacking. To study the molecular basis of sex determination and sexual differenti-
ation in schistosomes, we investigated the whole transcriptome of the human parasite
Schistosoma mansoniin a stage- and sex-comparative manner.

Methodology/ Principal Findings

We performed a RNA-seq on males and females for five developmental stages: cercariae
larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differen-
tially expressed between sexes in at least one of the developmental stages, and 4,065 of
them were functionally annotated. Transcriptome data were completed with H3K27me3
histone modification analysis using ChlP-Seq before (in cercariae) and after (in adults) the
phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determi-
nants of the sexual differentiation, (ii) sex-biased players of the interaction with the verte-
brate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an
illustration of sex-biased epigenetic landscapes.
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Conclusions/ Significance

Our work presents evidence that sexual differentiation in S. mansoniis accompanied by
distinct male and female transcriptional landscapes of known players of the host-parasite
crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such
combination could lead to the optimized sexual dimorphism of this parasitic species. As S.
mansoniis pathogenic for humans, this study represents a promising source of therapeutic
targets, providing not only data on the parasite development in interaction with its verte-
brate host, but also new insights on its reproductive function.

Author Summary

Parasitic flatworms include more than 20,000 species that are classically hermaphrodites.
Among them, the roughly hundred species of Schistosomatidae are intriguing because they
are gonochoric. Schistosomes are responsible of the second most important parasitic disease
worldwide, and eggs are the main cause of the inflammatory symptoms. Thus, studying the
sexual reproduction mechanisms of schistosomes is of particular interest for drug develop-
ment. Schistosome’s sex is genetically determined by the presence of sex chromosomes: ZZ
in males or ZW in females. There is, however, no phenotypic dimorphism in the larval
stages: sexual dimorphism appears only in the vertebrate host. In order to understand the
molecular mechanisms underlying phenotypic sexual dimorphism, we performed a tran-
scriptome analysis (RNA-Seq) in five different stages of the parasite lifecycle as well as a
chromatin status analysis (ChIP-Seq) in the non-differentiated stage cercariae and in the
adult differentiated stage, for males and females separately. Our work presents evidence that
sexual differentiation in S. mansoni is accompanied by distinct male and female transcrip-
tional landscapes of known players of the host-parasite crosstalk, developmental pathways
and epigenetic regulators. Our sex-comparative approach provides therefore new potential
therapeutic targets to affect development and sexual reproduction of parasite.

Introduction

Among the hundred species of Schistosomatidae, the Schistosoma genus is of particular medical
importance as it is pathogenic in humans. Seven Schistosoma species are responsible for schis-
tosomiasis (or bilharziasis) [1,2], which represents the second most important parasitic disease
after malaria and affects at least 240 million people worldwide [3]. Schistosoma mansoni,
responsible for the intestinal schistosomiasis, is endemic in Africa and South America [1] and
has been a study model for the Schistosomatidae. S. mansoni has a genome of 364.5MB
(genome version 5.2), containing 10,852 genes, seven pairs of autosomal chromosomes and
one pair of ZZ/ZW sex chromosomes [4,5]. S. mansoni has a complex life cycle in which a
freshwater snail from Biomphalaria genus serves as intermediate host and primates or rodent
species as definitive host. By definition, sexual reproduction occurs in the vertebrate host. The
parasite’s eggs are released in freshwater via the feces. Free-living larvae (miracidia) hatch out,
and infect the mollusc intermediate host where they transform into sporocysts that release
human infecting cercariae after asexual multiplication. These larvae actively seek definitive
host skin contact and penetrate the epidermis. During skin penetration, the cercariae lose their
tail, and their head undergo drastic morphological and physiological transformations. Within
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two hours, the free-living larvae become obligatory endoparasitic schistosomula. They leave the
dermis to reach the bloodstream and migrate to the liver via the lungs [6,7]. At the first steps of
the life cycle, some life-history traits have been shown to be different between males and females
[8], but no apparent phenotypic sexual dimorphism exists from the eggs to the early stages of
schistosomula, in spite of the fact that the parasites possess genetically different sexes. After two
to five weeks within the definitive host, and once they reach the hepatic portal system [9], the
schistosomula develop from 150 pum juvenile sexually undifferentiated individuals into one centi-
meter differentiated male or female adult worms. This developmental step could be defined as
“sexual differentiation”. Then, dimorphic males and females mate and migrate together to
mesenteric venules where they intensely reproduce. Mating is critical for completing gonadal
maturation of both sexes [10]. In the adults, the dimorphic phenotype is crucial for the fitness of
the parasite: (i) the muscular male clasps the female into his gynaecophoric groove to resist the
high blood pressure environment, (ii) the filiform female is able to insinuate into the tiniest
venules of the intestine to lay the eggs one by one [11] up to 300 eggs per day. Approximately
50% of these eggs remain trapped in the vertebrate host, causing inflammatory chronic disease
[12]. The paired adult parasites can remain for decades in their host, showing their highly
adapted interaction with the vertebrate host and the success of the gonochoristic strategy.

In this context, the understanding of developmental and reproductive biology of schistosomes
is crucial to fight schistosomiasis. Many studies have addressed the question of the development
of the parasite within its vertebrate host and the establishment of the highly efficient reproductive
system [13]. Particularly, numerous works have highlighted the responsiveness of the developing
S. mansoni to the host blood microenvironment and shown that the parasite might exploit endo-
crine and host immune signals to accomplish its development [14-18]. The mating status (i.e.
paired vs unpaired) has also been shown to play an essential role for the maturation of both male
and female [19-26]. Other molecular studies have highlighted male- or female-biased pathways
essential for the development and the reproduction of the parasite [27-35]. Global transcriptomic
analyses were carried out on diverse developmental stages [4,36-38] but sex-biased expressions
were only explored in adult [38,39] or cercariae [40]. Epigenetic control for gene expression regu-
lation has also been investigated and highlighted sex-specific epigenetic processes with chromatin
structural changes occurring on female-specific microsatellite repeats of the W-chromosome
during the development of the parasite [41]. Moreover sex-biased and stage-specific microRNA
(miRNA) precursor expression suggests that non-coding RNAs (ncRNAs) participate in the S.
mansoni sexual differentiation process [42-44].

In the present report, we propose to correlate molecular mechanisms to phenotypic sexual
dimorphism appearance. With this in mind, we present the global transcriptome of S. mansoni
in a stage- and sex-comparative manner. Here, we employed an exhaustive RNA-sequencing
analysis in five stages of in vivo development of S. mansoni, from the undifferentiated cercariae
to the phenotypically very distinctive male and female worms. The in vivo schistosomulum dif-
ferentiating stages, critical in the host/parasite interaction, were sub-categorized in three mor-
phologically consistent groups of individuals [45-47] and are described here for the first time.
In addition to the transcriptomic study, we present male and female genome-wide chromatin
structure profiles before (in cercariae) and after (in adults) the somatic sexual differentiation,
using ChIP-Seq against H3K27me3 as a proxy.

Methods
Sampling and raw data production

Animal breeding and ethics statement. Housing, feeding and animal care followed the
national ethical standards established in the writ of February 1st, 2013 (NOR: AGRG1238753A).
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The French Ministere de I'Agriculture et de la Péche and the French Ministére de 'Education
Nationale de la Recherche et de la Technologie provided permit A66040 to the laboratory for ani-
mal experiments and certificate to the experimenters (authorization 007083, decree 87-8438).

Parasite culture and sample preparation. The human guadeloupean strain of Schisto-
soma mansoni SmMGH2 used in this study is maintained in Biomphalaria glabrata snail, strain
BgGua, and Swiss OF1 mice. In order to obtain unisexual clones of cercariae, monomiracidial
infections of mollusks were performed (Fig 1A). Cercariae of each sex were separately recov-
ered 35 days after infection. The sex of the cercarial clones was determined by PCR of female-
specific repetitive sequences (S1 Table) [48] and mice were infected with 500 cercariae exclu-
sively male or female (i.e. unisexual infections) (Fig 1B). In vivo schistosomula were obtained
by perfusion of the hepatic portal system between three and four weeks post-infection (PI) (Fig
1C) [49]. Schistosomula were sorted into three finely defined stages (s#1, s#2 and s#3, from the
younger to the older) in order to have parasite samples as homogeneous as possible. Sorting
criteria are based on caecum shape, acetabulum location and gynaecophoric canal appearance
in males [45,46]. Briefly, S#1 stage corresponds to the first steps of symmetric development on
both sides of acetabulum, the caecum being either non-fused or fused; S#2 stage is a phenotypi-
cally asexual stage showing a smaller top part (from the oral sucker to the acetabulum), com-
paring to the lower part of the body (i.e. allometric growth); S#3 stage is the first dimorphic
developmental stage following gynaecophoric canal apparition in males, and lengthening with
loss of pear-shaped aspect in females: the linked caecum is longer than the bifurcated one but it
is still less than three-fold longer (S1 protocol). Finally, male and female adult worms were
recovered from the unisexually infected mice after 49 days PI by perfusion (Fig 1D). For each
stage, parasites were stored at -80°C until RNA extraction.

Total RNA isolation. For each sex and stage, experiments were performed in two biologi-
cal replicates (Fig 1). RNA extractions were performed alternatively from 5,000 cercariae, 800
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Fig 1. Experimental strategy to compare molecular events occurring through male and female S. mansoni
development. (A) A monomiracidial infection of mollusks was first performed in order to obtain either ZZ male or ZW
female clonal cercariae. (B) The sex of the cercarial clones was determined by PCR of female-specific sequences and
unisexual infection of mice was then performed. For the molecular study, we recovered one free-living undifferentiated
stage of the parasite: cercariae; and four intra-vertebrate stages: (C) the three differentiating schistosomulum stages
and (D) the adult stage. The schistosomulum stages are characterized by the onset of sexual dimorphism between s#2
and s#3, and are described more in details in the S1 protocol. For these five stages, we compared the male and female
transcriptomes using RNAseq (biological duplicate). For the non-differentiated cercariae and the sexually differentiated
adults we also performed a ChIPseq in duplicate for males and triplicate for females.

doi:10.1371/journal.pntd.0004930.9001

RNAseq & ChlPseq
COMPARISONS:
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schistosomula s#1, 400 schistosomula s#2, 200 schistosomula s#3, 20 adult males or 100 adult
females. Briefly, parasites were ground in liquid nitrogen and solubilized in TRIzol (Thermo
Fisher Scientific). Total RNA was then extracted by adding chloroform. PureLink RNA Mini
kit (Ambion) was used for further purification following the manufacturer’s protocol. Total
RNA was eluted in 30 ul RNAsecure (Ambion) and incubated at 65°C for 10 min. Samples
were then treated with TURBO DNase (TURBO DNA-free, Ambion) and the reaction was
stopped by cooling down on ice during two minutes. RNA was finally purified on a column
(RNeasy mini kit, QTAGEN) and eluted in 30 pl RNase-free water. Quality and concentration
were assessed by spectrophotometry with the Agilent 2100 Bioanalyzer system.

Chromatin ImmunoPrecipiation assay. ChIPseq experiments were performed separately
on ZZ male (in duplicate) and ZW female (in triplicate) individuals for both phenotypically
non-differentiated cercariae and differentiated adult stages (Fig 1). Native immunoprecipita-
tion was done according to Cosseau et al. [50] using 4 ul of H3K27me3 antibody (cat. number
C15410069, lot number A1821D, 1.45 pg/ul). It required at least 10,000 female or male cercar-
iae, or 20 adult males, or 100 adult females per sample. Further details are available at [51].

Illumina library construction and high-throughput sequencing. c¢DNA library and
ChIP library construction and sequencing were performed at the sequencing facilities of
Montpellier GenomiX (MGX, France) and GATC Biotech (Germany). Concerning cDNA
libraries, the TruSeq stranded mRNA library construction kit (Illumina Inc., USA) was used
according to the manufacturer's recommendations on 300 ng of total RNA per condition.
Briefly, poly-A RNAs were purified using oligo-d(T) magnetic beads. The poly-A+ RNAs
were fragmented and reverse transcribed using random hexamers, Super Script II (Life Tech-
nologies, ref. 18064-014) and Actinomycin D. During the second strand generation step,
dUTP substituted dTTP to prevent the second strand to be used as a matrix during the final
PCR amplification. Double stranded cDNAs were adenylated at their 3' ends before ligation
was performed using Illumina's indexed adapters. Ligated cDNAs were amplified following
15 cycles PCR and PCR products were purified using AMPure XP Beads (Beckman Coulter
Genomics, ref.A63881). The quantitative and qualitative analyses of the library were carried
on Agilent_DNA 1000 chip and qPCR (Applied Biosystems 7500, SYBR Green). The
sequencing was performed on a HiSeq2000 in single read 50nt mode. Concerning ChIP
libraries, the TruSeq ChIP sample preparation kit (Illumina Inc., USA) was used according to
the manufacturer's recommendations on 30 ng of DNA per condition. Briefly, DNAs were
blunt ended and adenylated on their 3' ends. Illumina's indexed adapters were ligated to both
ends. Ligated DNA were enriched by PCR and sizes separated by electrophoresis. Size selec-
tion was performed at 400 base pairs (bp). The quantitative analysis of the DNA library was
carried on Agilent High Sensitivity chip and qPCR (Applied Biosystems 7500, SYBR Green).
The sequencing was performed on a HiSeq2000 and HiSeq2500 in single read 50nt mode.
RNA-Seq and ChIP-Seq reads are available at the NCBI-SRA under the accession numbers
SRP071285 (RNAseq on both sexes and ChIPseq on males) and PRJNA236156 (ChIPseq on
females).

Processing of raw data—RNAseq

The bioinformatic pipeline and the quality of the metrics are described in S1 supporting infor-
mation. All data treatment was carried out under a local galaxy instance [52]. After grooming
(i.e. Fastq sanger format checking) (Fastq galaxy tool v1.0.4, [53]) and quality assessment of
the reads (FASTX-Toolkit v0.0.13, [54]) we determined Phred quality scores over 25 for all the
nucleotides. Consequently, neither quality filtering nor trimming was applied and all the reads
were mapped to the S. mansoni reference genome (assembly version 5.2) [4] using TopHat
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(v2.0.9) [55], with the “very sensitive” option for Bowtie2 settings (v2.1.0.0, [56]). The resulting
BAM files were converted to SAM format (SAM tools v0.1.18.0, [57]) and the unmapped reads
were removed. In order to be consistent in the further differential analyses between the differ-
ent samples, all datasets were adjusted to the smallest by randomly picking 65,844,021 reads
from each file. Exon-intron structure was then reconstructed with Cufflinks (v2.1.1) [58] with-
out any correction parameter: neither quartile normalization, nor bias corrections were
applied. All the obtained data were joined with Cuffmerge (v1.0.0) [58] without any genome
reference nor guide, in order to create a S. mansoni de novo reference transcriptome containing
the exon-intron structures of the five developmental stages. The GTF file of this transcriptome
is available at the IHPE laboratory webpage [59] and the sequences of all the assembled unique
transcripts (TCONS) in the S5 Table (sheetl). We quantified each sample read abundance by
mapping each condition to this de novo reference transcriptome with HTseq (v0.6.1p1) with
the overlap resolution mode union [60]. Finally, the differential gene expression levels between
sexes were analyzed with the DESeq package (v1.12.1) [61]. We carried out five comparisons:
male vs female cercariae, male vs female schistosomula s#1, male vs female schistosomula s#2,
male vs female schistosomula s#3, male vs female adult worms (Fig 1). Considering one stage
and one transcript, significant difference in expression between sexes was evaluated according
to the adjusted P-value (Padj) for multiple testing with the Benjamini-Hochberg procedure
which controls false discovery rate (FDR). Genes that were significantly (Padj <0.05) overex-
pressed in one sex compared to the opposite sex, were defined as “sex-biased genes”

Functional annotation

The de novo assembled transcriptome was entirely and automatically annotated (S5, sheet2).
Blastx searches against the non-redundant database of the NCBI (14-oct-2013) were performed
on a local server using BLAST 2.2.26+ version [62]. XML files were loaded onto Blast2GO for
gene ontologies (GO), mapping and annotation with version b2g_sep13 of the Blast2GO data-
base [63]. InterProScan 5-44.0 version [64] was then used and Interproscan GO were merged
to Blast2GO. Using BLAT (v34) [65] we aligned the de novo transcriptome to the S. mansoni
coding sequences of the reference genome v5.2 (ASM23792v2.30) got at the Ensemble
Genomes resource [66], setting the minimum score to 50. In the case of alignment of a Cuf-
flinks gene (XLOC_ID) to multiple reference genes (Smp_IDs), the hit with the higher identity
was considered as the correct alignment. Reciprocally, only the higher coverage for a reference
transcript was conserved. We then use Cuffcompare, an associate utility program of Cufflinks
(v2.2.1) in order to characterize the type of matches between the Cufflinks transcripts and the
reference transcripts (v5.2). Functional analysis introduced in this paper mainly consider the
three stages cercariae, schistosomula s#2 and adults because these three stages display the high-
est number of significant sex-biased genes, due to the quality of the biological replicates [61].
Concerning the two other schistosomulum stages s#1 and s#3, we detected less than 100 signifi-
cant sex-biased genes (Padj<0.05). Thus, only the 100 best adjusted P-values were analyzed
(S2 Table) and heatmaps revealed the consistence of replicates in these stages (S1 supporting
information, slide5).

Gene Ontology sex-comparative enrichment. To identify GO terms that were signifi-
cantly up- or down-regulated between males and females, a Blast2GO enrichment analysis was
performed (version 2.6.4) (S3 Table) [63]. Six test sets were used, corresponding to the sex-
biased transcripts of three stages: cercariae, schistosomula s#2 and adults. Increases in GO
terms were considered statistically significant at P < 0.02 (Fisher exact test). We focused our
analysis on biological processes only. The number of GO terms in each category was normal-
ized towards the total number of enriched GO terms for each dataset.
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Functional clusters of sex-biased genes. For each gene (XLOC), we considered only the
annotation of the longest unique transcript (TCONS) for manually sorting into 16 functional
categories based on their sequence homology (S4 Table). In these 16 functional categories, we
manually picked sex-biased transcripts depending on the function of their orthologs and sorted
them into six functional representative under-categories related to: “homeotic genes

» o« » <« » «

factor pathways”, “steroid pathway”, “mobile genetic elements”, “splicing” and “chromatin

» «

, “growth-

modifications”. The transcripts of each category were then clustered according to the develop-
mental pattern of their sex-biased expression (represented by the log10 fold-change) using
Gene Cluster 3.0 [67] software with the complete linkage method and hierarchical parameters.
Graphic representations were obtained with Java treeView software 1.1.6r4 version [68].

Functional de novo annotation of the 100 best sex-biased genes for each stage. For the
five developmental stages, the top 100 of the sex-biased genes (100 best Padj) were de novo
manually and separately annotated using Blastx (v2.2.30) [62], CD-search (for blast for con-
served domain) (http://blast.ncbi.nlm.nih.gov/Blast.cgi, [69]) and the information available
from the web based interface geneDB (http://www.genedb.org, [70]). This functional de novo
annotation is presented in S2 Table.

Identification of miRNA precursors. In order to identify transcribed miRNA precursors,
the de novo transcriptome was compared with miRBase sequences [71] using Blast. Only the
transcripts covering the stem loop sequence of known S. mansoni miRNA precursors with
100% of homology were conserved (S5 Table, sheet4).

Quantitative real-time Polymerase Chain Reaction (RT-qPCR)

For each developmental stage and sex of the parasite, first strand cDNA synthesis and qPCR
validation experiments were achieved on two different biological replicates. 500ng of the puri-
fied total RNA were reverse transcribed using identical concentration (250 nM) of random and
oligo-dT primers of Maxima H Minus Reverse Transcriptase kit (ThermoSCIENTIFIC).
qPCRs were performed using a LightCycler 480 System (Roche Diagnostics) with the LightCy-
cler 480 SYBR Green I Master Mix (Roche Diagnostics). Single product amplification was
checked by analysis of the amplicon melting curve and capillary migration on a Labchip GX
DNA assay system (PerkinElmer). For each reaction, the crossing point (Cp) was determined
using the second derivative maximum method using Light Cycler Software version 3.3 (Roche
Diagnostics). For each studied stage, sex, and replicate, the level of transcription was normal-
ized using the mean geometric transcription rate of three reference sequences Smp_093230
(Sm-arp 10, actin protein 10), Smp_197220 (Sm-RPL35, subunit of the oligosaccharyltransfer-
ase) and Smp_089880 (Sm-fad oxidoreductase, FAD dependent oxidoreductase domain contain-
ing protein) previously described [72]. The stability indexes of those reference genes were
calculated using NormFinder (v20) [73] to assess if they were stable (i) during all the develop-
mental stages and (ii) between males and females. Forward and reverse primers (Eurogentec)
were designed for 43 genes (in addition to the three housekeeping genes) with the Primer3plus
web based interface [74], the lack of putative primer dimer was checked with Perlprimer
(v1.1.21) and the uniqueness of the target was verified using blast on the S. mansoni genome
v5.2. Primer efficiencies were >1.8 for each couple. Primer sequences and expected PCR prod-
uct sizes are listed in S1 Table. Correlation between RNAseq and qPCR was tested both globally
and individually for each gene with a Spearman Rank test (S2 supporting information).

Processing of raw data—ChlIPseq

ChIP-Seq data analysis. After grooming (i.e. fastq sanger format checking) (Fastq galaxy
tool v1.0.4, [53]) and quality assessment of the reads (FASTX-Toolkit v0.0.13, [54]) we
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determined Phred quality scores over 25 for all the nucleotides. Consequently, neither quality
filtering nor trimming was applied and all the reads were mapped to the S. mansoni reference
genome (assembly version 5.2) [4] using TopHat (v2.0.9) [55], with the “very sensitive” option
for Bowtie2 settings (v2.1.0.0, [56]). Mapping quality in Bowtie 2 is related to “uniqueness” of
the mapping [56]. SAM alignment files were converted into the bed format with pyicos [75]
and sorted with sortBed -i of the bedtools suite [76]. For peaks identification an equal number
of 15,000,000 random lines in the bed-file was chosen for each biological replicate. Identifica-
tion of peaks was done with ranger of Peakranger v1.16 [77] with P-value cut off 0.0001, FDR
cut off 0.01, Read extension length 200, Smoothing bandwidth 99 and Delta 1. We used the
input samples (i.e. from unbound samples) as negative controls for the peakcalling (-c). The
quality of the metrics is presented in S1 supporting information.

Comparative EpiChIP analysis. Average histone modification profiles around transcrip-
tional start site (TSS) were generated in a 6,000 bp window from -1,000 to +5,000 bp relative to
the TSS of genes, using EpiChIP v0.9.7-e [78]. As input, we used the 15,000,000 randomly sam-
pled aligned reads that also served as inputs for PeakRanger [77]. The average histone profiles
were generated on the first chromosome and the linkage group ZW. For this purpose, we used
the de novo transcriptome (GTF output file of Cuffmerge) and selected the 6,225 and the 5,797
expressed genes of these chromosomes respectively. The average H3K27me3 and input profiles
were generated for the two male biological replicates and the three female biological replicates.
Each average H3K27me3 profile was normalized with its respective input average profile. The
distribution of chromatin structural changes from the transcription starting site were com-
pared according to the stage and the sex of the parasite using Kolmogorov-Smirnov two sample
tests (S1 supporting information, slide10).

List of ID numbers for genes mentioned in the text

Protein coding genes mentioned in the text are accessible on GeneDB ([70], http://www.
genedb.org/) under the following accession numbers: Smp_093230: actin protein 10 (Sm-
arp10) / Smp_197220: subunit of the oligosaccharyltransferase (Sm-RLP35) / Smp_089880:
FAD dependent oxidoreductase domain containing protein (Sm-fad oxidoreductase) /
Smp_196410: dachshund / Smp_000530: zinc finger transcription factor gli2 / Smp_141030:
EGF receptor kinase substrate 8-like / Smp_035260: EGF receptor kinase substrate 8-like /
Smp_134550: Neuropeptide (Sma-npp-27) / Smp_212730: tyrosine kinase, TK group, Src fam-
ily (SmTK3) / Smp_174880: FOG / Smp_103470: protein mago nashi / Smp_045950: trans-
former 2 protein / Smp_009600: serine: threonine protein kinase PLK1 (polo-like kinase 1) /
Smp_159800: MEG-2 (ESP15) family / Smp_159810: MEG-2 (ESP15) family / Smp_010550:
MEG 15/ Smp_163630: MEG-4 (10.3) family / Smp_033600: Dicer 2 / Smp_118190: staphylo-
coccal nuclease domain-containing protein / Smp_165220: polycomb protein EED /
Smp_006250: polycomb protein Scm1 (Sex comb on midleg homolog, Scm1).

miRNA precursors mentioned in the text are accessible on miRBase ([71,145], http://www.
mirbase.org/index.shtml) under the following accession numbers: M10027256: sma-mir-1a /
M1I10027255: sma-mir-8458 / MI0027196: sma-mir-125¢ / MI0027285: sma-mir-8483 / M1002
7247: sma-mir-8451 / M10027258: sma-mir-8459 / MI10027222: sma-mir-8429.

Results
Identification of “sex-biased genes”

We generated the transcriptomes of cercariae, three developmental stages of schistosomula
(s#1, s#2 and s#3) and adult worms from unisexual infection. Details and illustrations for the
sorting criteria of the three classes of schistosomula are shown in S1 protocol. For each
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developmental stage, males and females were analyzed separately with two biological replicates
(Fig 1).

In total, the transcriptome sequencing of these 20 samples yielded 1,080,386,261 Illumina
single reads of 50bp and 981,363,482 mapped to the S. mansoni reference genome (v5.2). These
mapped reads could be assembled in 54,956 unique transcripts identified as “TCONS”, (S5
Table, sheetl) representing putative splice variants of 34,755 genes identified as “XLOC” (S5
Table, sheetl). Among these expressed genes, 9,581 annotated genes of the S. mansoni refer-
ence genome (v5.2) could be identified with the blat aligner (S5 Table, sheet3). Notably, we
found that 6.95% of the transcripts could correspond to novel isoforms of known transcripts
and that 45.39% were located in intergenic region of the reference genome (S1 supporting
information, slide6).

Quantification of read abundance and DEseq analysis of differential gene expression
between sexes were performed for each stage. We present here significant transcriptomic dif-
ferences (adjusted P-value < 0.05) observed in cercariae, schistosomula s#2 and adults. These
three stages taken together, 7,168 genes appeared as significantly differentially expressed
between sexes (i.e. either more expressed in males or more expressed in females) in at least one
of the classes (Fig 2A). They were defined as “sex-biased genes” and represent 20.62% of the
total number of expressed genes. For cercariae, schistosomula s#2 and adults, we identified
respectively 5,264 (2,353 male-biased and 2,911 female-biased); 1,534 (1,040 male-biased and
494 female-biased) and 1,645 (1,043 male-biased and 602 female-biased) sex-biased genes (Fig
2). Ninety-eight male-biased and 26 female-biased genes were consistent through all the stages
(Fig 2). Interestingly, several genes are alternatively more expressed in females or in males,
they were qualified as “sex-switching biased genes” (Fig 2D). To further support our transcrip-
tomic analysis, QPCR experiments were performed to validate the expression patterns obtained
from the DEseq analysis. Forty-three transcripts were randomly tested and a Spearman Rank

B. C.

&\ > @\
1534 @\ b 494 /Q\ b 1040 \ b

3 \ ¥ \3F)

399 275 98 A 47 260 @207

131
5264 732 1645 2911 148 602 2353 527 1043
\_{\\:}\\ c a & )\/\ \? c a l: i c

D. Switching e
sexcbias Cercariae S#2 Adults
Cercariae N.A. 22 20
9 s#2 19 N.A. 8
Adults 37 13 N.A.

Fig 2. Venn diagrams of sex-biased genes. For each of the three developmental stages (a) cercariae, (b) schistosomula s#2 and
(c) adults, significant differences (Padj<0.05) between sexes were detected by DEseq analyses. Here are represented the number of
sex-biased genes by stage and those that are shared between different stages: (A) when pooling male- and female-biased genes, or
considering only (B) female-biased genes or (C) male-biased genes. (D) The table represents the number of sex-switching biased

genes that are more expressed alternatively in females or in males depending on the developmental stage.

doi:10.1371/journal.pntd.0004930.9002
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test determined that RNAseq and qPCR experiments were significantly (p<0.0001) and posi-
tively correlated, with a coefficient R = 0.65 (S2 supporting information).

Gene Ontology analysis: Disparity in perception of environmental
factors, metabolism and chromatin structure between sexes

Among the 7,168 “sex-biased” genes, 2,468 corresponded to known genes (S4 Table, sheet20)
and 1,598 other could be de novo functionally annotated by the blast2GO analysis (S4 Table,
Sheet19), totalizing 4,065 functionally annotated sex-biased genes. To gain insight into major
biological processes that would be enriched during development in either male or female indi-
viduals, we performed an exact Fisher test using the blast2GO software, focusing on the “bio-
logical processes” ontology. Enriched GO terms are presented in the S3 Table. To obtain a
more synthetic overview, we manually sorted the GO terms into more general categories and
considered the GO term enrichment for each of them (Fig 3A). Of particular interest in the
context of host-parasite interaction, we detected that the response to “environmental stimulus”
occurred in cercariae at the same level for both males and females (Fig 3B). Nonetheless, GO
terms were different and indicated a distinct perception of environmental factors (S3 Table).
Female cercariae displayed a better “response to light” and “mechanical stimulus” than males.
Male cercariae seemed better responsive to “chemical stimuli” and this capacity was main-
tained in schistosomula and adult worms. Among the GO terms involved in response to
“chemical stimuli’, we noticed the particular biological processes “response to vitamin D” and
“growth epidermal factor” (both enriched in male cercariae, S3 Table sheetl), and “response to
cortico/gluco-steroid stimulus” (enriched in male schistosomula, see S3 Table sheet3). Along
with these differences in environment perception we detected distinct representation of terms
related to metabolic functions between sexes. Particularly, some categories were more enriched
in males whatever the developmental stage such as “protein process”, “heme related process”,
“energy” and “carbon metabolism” (Fig 3B). Besides, and of special interest for gene expression
regulation, we detected a particular enrichment of the category “chromatin structure” in male
schistosomula and adults. This category did not display any differences between sexes in the
larval stage (Fig 3C). The corresponding GO terms are represented in the Fig 3D. They all con-
verged toward a strong chromatin re-organization during the vertebrate stages of the parasite,
emphasized in males. Finally, considering processes putatively involved in the sexual dimor-
phism appearance, our GO term analysis indicated that the very general “development” cate-
gory was over-represented in female cercariae and adults, but more in male schistosomula (Fig
3B). More specifically, “sexual differentiation” was a category over-represented in female cer-
cariae while the “reproduction” category was over-represented in male cercariae and schistoso-
mula and then reversely over-represented in adult females (Fig 3B).

Functional analysis of sex-biased genes: Focus on development and
survival in a host/parasite context

The 4,065 functionally annotated sex-biased genes were manually classified into 16 classes
related to (i) the general developmental pathways, (ii) the sex determination and/or sexual dif-
ferentiation pathways and (iii) the detection of the environment and/or the interaction with
the vertebrate host (S4 Table).

Distinct general developmental pathways are involved in males and females. In female
cercariae, the over-representation of the “development” GO category was related to a high
extent in female-biased homeotic genes representing 32 of the 39 sex-biased homeotic genes
(Fig 4A). Furthermore, we detected a female-bias for another interesting developmental gene:
“dachshund homolog” (Smp_196410), which is also differentially regulated between sexes in
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Fig 3. GO term analysis of sex-biased genes. (A) Distribution of total sex-biased GO categories (i.e. both sexes and considering the three stages).
(B) Percentage of male (in blue) and female (in pink) sex-biased GO terms for each category within each stage: cercariae, schistosomula s#2 and
adults. (C) Percentage of sex-biased GO terms related to chromatin structure in schistosomula and adults. (D) Sex-biased GO terms related to
chromatin structure in schistosomula and adults.

doi:10.1371/journal.pntd.0004930.9003

Drosophila melanogaster [79]. We also observed the sex-switching bias of expression of a tran-
scription factor, “gli2” (Smp_000530), which was male-biased in cercariae and adult stages but
female-biased in schistosomula s#2. Besides, six growth factor pathways showed mainly male-
biased gene expression: the epidermal growth factor (EGF) pathway, the fibroblast growth fac-
tor pathway, the tumor necrosis factor pathway, the shared pathway of the transforming
growth factor beta and the bone morphogenetic protein, the wnt signaling pathway and the
notch signaling pathway. We identified 41 male-biased genes for 58 sex-biased members for
signal molecules, receptors, downstream effectors and/or regulators (Fig 4B). Interestingly,
three gene products matched with “EGF Receptor kinase substrate 8-like” (Smp_141030,
Smp_035260 and the non-referenced XLOC_034752). These receptors were previously
described as expressed in schistosome gonads [32]. Consistently with the GO term analysis
which underlined a “response to cortico/gluco-steroid stimulus” particularly enriched in male,
we also detected that the steroid pathway was strongly male-biased from cercariae to adult
stages (29 of the 40 sex-biased genes). Among them we identified enzymes, receptors and prod-
ucts involved in cholesterol perception and transport, or lipid metabolism (Fig 4C). In relation
to the neuro/hormonal system and of particular interest, we detected a male-biased neuropep-
tide among the male-biased 100 best P-values in adults (Smp_134550, or Sma-npp-27 [80]). In
conclusion, these results pointed out a major female-biased pattern of expression of homeo-
genes at the cercarial stage, together with a male-biased profile of growth factor pathways. It
further highlighted that males and females differently expressed genes related to hormonal and
nervous systems.

Sex determination and sexual differentiation pathway analysis revealed some key candi-
dates. We identified several interesting male-biased genes in cercariae and schistosomula. In
cercariae, we pointed out the male-biased “cytoplasmic kinase SmTK3” (Smp_212730) which
was shown to be involved in schistosome reproduction [81], and the Z-specific gene “fog”
(Smp_174880, [82-84]). In schistosomula, the unplaced “mago nashi protein homolog”
(Smp_103470, [85-87]) and the pseudoautosomal gene “transformer-2” (Smp_045950, [88,89])
were of particular interest because of their involvement in sexual differentiation in model
organisms. Finally, in adults, we detected the female-biased expression of the “polo-like kinase
1”7 (Smp_009600), known to be involved in schistosome reproduction [30]. To conclude, we
highlighted here some key genes expressed in a sex-biased manner and whose function are
related to the sexual identity (i.e. sex determination or sexual differentiation pathways) and the
reproductive function (i.e. meiosis) either in schistosome or other model organisms.

Environment detection and interaction with the vertebrate host involved different gene
repertories in males and females. Because of their parasitic mode of development, and tak-
ing into account the differences in “response to environmental stimulus” shown by the GO
analysis, we assessed if males and females interacted in the same way with their vertebrate host,
not only in term of nutritive micro-environment, but also in term of host invasion (i.e. penetra-
tion and/or immunogenic aspects) (54 Table, sheet5). Thus, we identified sex-biased genes that
encode functions related to host invasion: males and females displayed different repertories of
proteases (96 sex-biased proteases) and especially metalloproteases. Each sex presented also
distinct repertories of protease inhibitors, delivered proteins and tegumental antigens or recep-
tors. We detected for instance 63 sex-biased tegumental proteins, and nine were identified as
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Fig 4. General clustering of sex-biased gene expression depending on their “general developmental
pathway” functional category. Male-biases are represented in blue, female-biases in pink and non-significant
differences (Padj>0.05) in black. Three stages are considered: (a) cercariae, (b) schistosomula s#2 and (c) adults.
(A) 39 homeotic genes are mainly female-biased in cercariae. (B) 58 genes linked to growth factor pathways are
mainly male-biased in cercariae and adults. (C) 40 genes are related with the steroid pathway and are mainly

male-biased through the three stages. The functional annotation and details on gene expression are provided in
S6 Table.

doi:10.1371/journal.pntd.0004930.g004

“tetraspanin”, which are known to be involved in the induction of protective immunity [90,91].
In addition, we particularly detected sex-biased expression of “venom-allergen-like” (VAL)
molecules and “microexons genes” (MEGs) which are supposed to be involved in the molecular
interaction with the host [92-96]. Four biased MEGs and one VAL were among the 100 best P-
values. Four MEGs were previously identified and annotated in the reference genome
(Smp_159800, Smp_159810, Smp_010550 and Smp_163630) [4]. Interestingly, we identified
two novel MEGs (XLOC_030935 and XLOC_006117), showing both a majority of very small
exons (<37b), mainly symmetrical (with a number of bases divisible by 3) as defined classically
[93]. Their structures are presented in the S7 Table. In conclusion, we identified sex-biased
expression of known or supposed players of the crosstalk between the parasite and its verte-
brate host as well as previously non-annotated MEGs with a sex-biased expression profile.

Sex-biased candidate regulators of gene expression

Players of transcription mechanisms, genetic mobile elements, chromatin remodeling and
other DNA modifications together with RNA processing were examined by a combination of
the transcriptomic approach and epigenetic analysis.
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Fig 5. Overview of the 12 sex-biased miRNAs through three stages of the schistosome lifecycle (a: cercariae, b: schistosomula s#2, c:
adults). (A) General clustering of sex-biased miRNA expression: seven male-biased miRNAs were detected (in blue), five were female-biased (in
pink). (B) Table of sex-biased miRNA precursors IDs, chromosomal location and expression bias. Four miRNAs were located on sex chromosomes:
three on the Z-specific regions (as defined by Protasio et al. [4]) were overexpressed in males. Key: PSA = PseudoAutosomalRegion, Z = Z-specific

gene, N.A. = no sex-bias of expression.

doi:10.1371/journal.pntd.

0004930.9005

Post-transcriptional regulatory mechanisms are themselves sex-biased. Two male-
biased candidates of the “RNA-induced silencing (RISC) complex” were detected: the endoribo-
nuclease “dicer2” (Smp_033600) in cercariae, and the “staphylococcal nuclease domain-contain-
ing protein 17 (Smp_118190) in adults. This RISC complex is a key player of the processing of
single stranded RNAs, such as miRNAs precursors, involved in gene silencing at the post-tran-
scriptomic level [97 for review]. The presence of miRNAs precursors was also investigated by
intersecting the sex-biased transcripts with the known miRNA precursors in miRBase. Twelve
perfect matches with known S. mansoni miRNA hairpin precursors were identified [43,98]:
seven were male-biased and five female-biased (Fig 5). Interestingly, four of them were located
on the sex chromosomes. Concurrently to this approach, we detected 873 genetic mobile ele-
ments that were mainly associated to female adults (Fig 6A).

Besides these non-coding elements, we detected that 42 genes among the 45 “splicing
machinery and factors” were male biased (Fig 6B), together with other genes involved in post-
splicing control and mRNA editing (54 Table, sheet6). In conclusion, these results showed that
sex-biased post-transcriptional regulation could occur to differentially regulate gene expression
between males and females.

Chromatin modifications: The histone mark H3K27me3 dynamic is different between
males and females. Thirty-seven genes among the 59 candidates to “chromatin structure reg-
ulation” were male-biased (Fig 6C). Particularly, we detected among the 100 best adjusted P-
values in schistosomula s#2, the Z-specific “polycomb protein EED” (Smp_165220) and the Z-
specific gene “sex comb on midleg homolog” (Scm1, Smp_006250) [99,100]. To verify the
hypothesis of a strong genome-wide chromatin reorganization during the vertebrate stage, we
performed a ChIP-Seq analysis against H3K27me3. This histone mark was chosen because it is
known to be a major player for the regulation of developmental genes in embryonic stem cells
[101]. Furthermore, the tri-methylation of H3K27 plays also a key regulatory role in

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004930 September 27, 2016
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Fig 6. General clustering of sex-biased gene expression depending on their “regulation of gene
expression” functional category. male-biaises are represented in blue, female-biaises in pink and non-
significant differences (Padj>0.05) in black. Three stages are considered: (a) cercariae, (b) schistosomula s#2 and
(c) adults. (A) 873 mobile genetic elements were detected as sex-biased, mainly in female adult worms. (B) 45
splicing-linked genes are mainly male-biased in schistosomula s#2. (C) 59 genes involved in chromatin
modification are mainly male-biased in schistosomula s#2. The functional annotation and details on gene
expression are provided in S6 Table.

doi:10.1371/journal.pntd.0004930.9g006

Schistosoma development as it was earlier identified during cercaria to schistosomulum transi-
tion [102]. We generated an average enrichment profile for H3K27me3 on cercariae and adults,
in distinct samples of both sexes (Fig 1). This analysis was performed on the first chromosome,
as representing the autosomes (i.e. largest placed chromosome of 79.6 Mb, [4]) and on the sex-
chromosomes, independently on Z-specific and pseudo-autosomal regions (as defined by [4]).
The same average enrichment profile for H3K27me3 was obtained on the first chromosome
and on the sex-chromosomes both in the Z-specificand pseudo-autosomal regions (S1 sup-
porting information, slides 8 to 10). In males, the tri-methylation of H3K27 was clearly
removed from cercariae to adults (56.5% of maximum difference with the Kolmogorov-Smir-
nov two sample tests) whereas in females the dynamics of this histone modification is less than
twice smaller (25.6% of maximum difference). The H3K27me3 enrichment profile in cercariae
differs between the two sexes both upstream and along the transcription unit (Fig 7A); whereas
in the adult stage, males and females display the same profile after the transcriptional start site
(TSS), while their profile upstream the TSS remains different (Fig 7B). Therefore, our results
showed a sex-biased dynamics of the H3K27 tri-methylation, with an emphasized depletion of
this histone mark along the transcription unit in males, during the vertebrate stage in both
autosomes and sex-chromosomes.
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Fig 7. Average H3K27me3 enrichment profile of the chromosome 1 genes. X axis represents the position in bases relative to the transcriptional
start site (TSS, position 0), Y axis represents the normalized mean enrichment of reads obtained after a ChlP targeting the H3K27me3 mark on (A)
cercariae and (B) adults. The EpiChIP enrichment has been calculated around the TSS of the chromosome 1 transcripts obtained in our RNA-Seq
experiment. It has been normalized with the same mean enrichment of reads obtained after a ChIP without antibody. The mean profile for two male
biological replicates (blue) and three female biological replicates (red) are represented. The profile for each replicate is provided in S1 supporting
information (Slide 8). The same profile was obtained for the ZW linkage group.

doi:10.1371/journal.pntd.0004930.9007

Discussion

We provide here the first comparative analysis of male and female transcriptomes of S. man-
soni through three developmental stages: the undifferentiated larval cercariae, an in vivo schis-
tosomulum stage s#2, and the dimorphic adult worms. Two other in vivo schistosomulum
stages s#1 and s#3 were sequenced but non-detailed here (see DEseq results in S5 Table sheet5,
and 100 best P-values in S2 Table). Along with the described schistosomulum stage s#2, they
were never reported before. Our functional analysis highlighted three important aspects of the
parasite biology that differ between sexes: (i) Distinct general developmental pathways are
involved between male and female schistosome development together with more specific sex
determination/differentiating candidates. (ii) Male and female parasites interact in distinct
ways with their vertebrate host. (iii) Male and female display different landscapes of pre- and
post-transcriptional mechanisms of gene expression regulation, associated with different
dynamic of the H3K27me3 histone mark.

Sex determination/differentiation candidates and male/female
differences in general developmental pathways

Despite the large attention given to S. mansoni reproduction biology, only few molecular candi-
dates have been shown to be key players of sex determination and differentiation and most are
related to sexual maturation after pairing. They mainly belong to the “kinome” [27,29-
32,103,104], particularly the TGFp pathway [17,25,105,106], and were identified as new poten-
tial target for therapies [107]. Our transcriptional study allows the identification of several
promising candidates with a sex-biased expression (Fig 8B), and we discuss here four of them
that, in our opinion, need further attention. The “mago nashi protein homolog” (Smp_103470)
is male-biased in schistosomula. Its gene product is a nuclear factor highly conserved from

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004930 September 27, 2016
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[130]. (B) Molecular events preparing parasite development start before the host penetration: while intrinsic pathways (homeogenes) are female-
biased, growth factor and hormonal pathways are male-biased. These pathways could not only be intrinsic to the parasite, but also linked to the host
microenvironment. These differences in developmental strategy could lead to the previously hypothesized faster male development (2) [128] and thus
indirectly to the male-biased sex ratio (3) [130]. Several important candidates to sex determination and/or differentiation were identified both in males
and females through the three stages of development. (C) Different putative players of the host/parasite interaction were detected as sex-biased
trough the different stages of development. These differences could lead to both higher male immunogenicity and pathogenicity (4) [131, 142, 143].
Furthermore, if they facilitate male-resistance against the host immune system, they could indirectly be responsible of the male-biased sex-ratio (3)
[130]. (D) Different putative regulators of gene expression were detected as sex-biased. Particularly, the depletion in H3K27me3 histone mark could
lead to an optimized male development (2). Lines and dots link subcategories to more general biological process. “Black” life-history traits were
previously published and “grey” ones are hypothesized. Abbreviations: VALs = Venom Allergen Like proteins, MEGs = Micro Exon Genes

doi:10.1371/journal.pntd.0004930.g008

plants to animals [85,108] and is a sex-determined protein in some model organisms. For
instance, it is necessary for oocyte organization in Drosophila melanogaster [108,109] and for
maintaining oogenesis in Caenorhabditis elegans hermaphrodite individuals [110]. More-
over, previous experiment performed in S. japonicum showed its importance for male teste
organization [87]. However, no data was provided for females. Another important candidate
is the female-biased “dachshund” gene (Smp_196410) which by contrast is involved in male
development of D. melanogaster [79]. It could be an example of downstream actor of the sex-
differentiation cascade. The zinc finger transcription factor “gli2” could also be a candidate
of particular interest because it is related to the TGFp pathway intensely studied for its
involvement in sexual differentiation of S. mansoni [17,25,105,106]. Moreover, “gli2” is alter-
natively male or female biased depending on the parasite developmental stage and thus con-
tirms its “bipotentiality” [111] which could play a pivotal role in “sex-orientation” of the
development. For instance, in the sexual differentiation context it could switch to shape the
sperm/oocyte decision. This kind of mechanism is known to be involved in germ-line cell
decision in hermaphroditic nematodes [112]. In our study, several sex-switching genes
appear alternatively overexpressed in males or females depending on the developmental
stage. We for instance hypothesize that these genes could be particularly sensitive to host
environment, and molecular dysfunction on these candidates or environment variation
could consequently lead to abnormal hermaphroditism occasionally observed in S. mansoni
[113,114]. Besides, we describe here for the first time the male-biased expression of the neu-
ropeptide Sma-npp-27 (Smp_134550) in adults. In acoelomate, like schistosomes, the nervous
system occupies a particular role: as they lack both body cavity and circulatory system, the
nervous system is not only involved in sensory and neuromuscular signalization, but can also
transmit developmental and hormonal signals [115]. Accordingly, the study of Collins et al.
[80] defined a role for peptide hormones in controlling reproductive physiology, particularly
in males, in the planaria Schmidtea mediterranea. Our results could fit into their hypothesis
of shared molecular mechanisms of reproduction among flatworms, independently of their
hermaphroditic or gonochoric status.

During the cercarial stage, homeogenes are more expressed in females while growth factor
and hormonal pathways are over expressed in males successively in cercariae and vertebrate
stages (Fig 8B). The obligate implication of the host system regarding the parasite development
has received much attention [15,116-124] because interfering with the perception of the host
environment might be a possible therapeutic target [107,122]. Previous studies showed that the
physiological and reproductive status of the worm is strongly influenced by the host [125] and
hermaphroditic-like structures can occasionally appear under the environmental pressure of
this host [113]. In this context, growth factor and hormonal pathway over-expression in males
could not only result from intrinsic developmental pathways but also could reflect a better
receptivity to the host micro-environment (Fig 8A).
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Sex-biased host-parasite crosstalk, and putative links to life history traits

Cercariae actively seek vertebrate skin contact and prepare host invasion [126,127]. We have
identified here female biased genes involved in response to light and mechanical stimuli in cer-
cariae while males biased genes encodes function involved in response to chemical stimuli (Fig
8A). We hypothesize that males may be consequently more efficient to encounter their host,
which is consistent with the male-biased sex ratio in adults [128,129] (Fig 8.3). Furthermore, it
could account for the higher genetic diversity in male adult worms [129,130] (Fig 8.1), via a
better capacity of dispersion. After penetrating the vertebrate host, parasites have to overcome
its immune system. In this context, we detected sex-biased expression of secreted and/or tegu-
mental molecules known or supposed to be involved in host invasion (Fig 8C) among which,
known and new micro-exon genes encoding for variant secreted proteins [92], proteases and
protease inhibitors [131,132], “tetraspanins” [90]. In addition, we show for the first time sex-
biased expression of “venom-allergen like proteins” [92,133]. We thus further hypothesize that
the sex-biased expression of these candidates could explain the known differences between
male and female immunogenicity and pathogenicity (Fig 8.4) [134].

Sex-biased gene expression regulation: Which could be the
candidates?

Our analysis highlights different putative mechanisms of gene expression regulation between
males and females: miRNA (microRNA) precursors, mobile genetic elements, genes encoding
proteins involved in chromatin reorganization, and post-transcriptional events (splicing,
mRNA editing) (Fig 8D). Previous studies have highlighted miRNAs stage- and sex-biased
expression [42-44,98] as important factors for female maturation [44,135]. In addition, other
non-coding RNAs (e.i. W-specific long non-coding RNAs) are involved in sex chromosome
evolution [41]. Besides, schistosome miRNAs have been detected in the blood of the definitive
host that underlines their possible implication in the pathological processes of schistosomiasis
[136,137]. Although our experiment was not fully designed to identify mature miRNAs, we
found 12 transcripts encoding miRNA hairpin precursors with a sex-bias expression in favor of
either male or female individuals. The sex-biased pattern of their expression may be another
argument to explain the differences of pathogenicity between males and females (Fig 8.4). Our
result suggest that, non-coding RNAs certainly deserve fully dedicated experiments for both
their implication in the sexual biology of schistosomes and their role in the interaction with the
human host. Another interesting molecular mechanism highlighted in our study is the sex-
biased expression of mobile genetic elements. This aspect undoubtedly needs further investiga-
tion because: (i) of their high bias of expression (great proportion among the 100 best P-values
(S2 Table)), (ii) of their particular structural features (intronic localization of genes), and (iii)
previous works in model organisms showing that they could be essential in the reproduction
by playing a role in sex chromosome inactivation [138] and in the dosage compensation mech-
anism [139]. Another interesting aspect of schistosome developmental biology is the intense
chromatin remodeling that occurs after penetration into the definitive host [102]. We show
here that the male schistosomulum development is characterized by an over-expression of
genes involved in nucleosome assembly, structural maintenance of chromatin and structural
genes encoding for histones compared to female's development. These transcriptomic observa-
tions are reinforced by a depletion of the H3K27me3 histone mark, emphasized in males, from
cercariae to adult. H3K27me3 is known to be widely involved in developmental gene silencing
from invertebrates to vertebrates [101,102,140]. We hypothesize that the observed accentuated
depletion of this histone mark in males could be a strategy for enhancing male development
(Fig 8D and 8D.2).
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Finally all our observations seem to converge to an optimized male survival and develop-
ment in a host-parasite context. Considering the particular sexual biology of S. mansoni [141]
this strategy could serve to an enhanced pre-zygotic paternal investment and thus benefit not
only the males but also to the females which need males to achieve their maturation. This abil-
ity is essential for the survival and thus the reproductive success of the couple.

Concluding remarks and perspectives

In our study we present sex-biased pathways, related to development and host-parasite interac-
tion, which accompany sexual differentiation in S. mansoni. We further propose putative gene
determinants of sex determination/differentiation in this organism and candidate epigenetic
mechanisms involved in its regulation. Our analysis represents a first step towards the identifi-
cation of sex-pivotal genes and now further studies are required to validate the candidate func-
tions and to clarify sexual differentiation pathways. These coming works could involve tissue-
specific expression, knock-down and/or over-expression of the candidate genes. In a larger
context, we observed an important proportion of newly transcribed regions: further works
leading to their deep characterization could participate to the improvement of the actual refer-
ence genome v5.2.

Since schistosomiasis represents the second most important parasitic disease worldwide and
affects millions of people, providing new therapeutic targets is a substantial issue for the scien-
tific community [144]. We describe here a new in vivo transcriptome of free-living as well as
parasitic developmental stages of both sexes of S. mansoni. Our work paves a new way toward
understanding the complex molecular interplay that occurs between the host and S. mansoni
through the sexual differentiation of the parasite, thereby suggesting new potential drug targets
and vaccine candidates.
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